Gaussian Elimination

Next Up Previous 🗔 conter Index

Next: Gaussian Quadrature Up: No Title Previous: Gaussian Distribution

Gaussian Elimination

Gaussian elimination is used to solve the system of <u>linear equations</u> Ax = b, where

A =	a ₁₁ a ₂₁	a ₁₂ a ₂₂	 	$a_{1n} \\ a_{2n}$		b =	b1 b2	and	x =	$\frac{x_1}{x_2}$	
		•••	•••		ſ					:	
	a_{n1}	a_{n2}	•••	a_{nn} _			b_n			x_n	

The method consists of combining the coefficient matrix A with the right hand side b to the ``augmented'' (n, n + 1) matrix

	a ₁₁	a_{12}	•••	a_{1n}	b1 -	
[4 2]	a ₂₁	a_{22}	•••	a_{2n}	b_2	
[A b] =	:	÷		÷	÷	•
	a_{n1}	a_{n2}		a_{nn}	b_n	

A sequence of elementary row operations is then applied to this matrix so as to transform the coefficient part to upper triangular form:

- • multiply a row by a non-zero real number *c*,
- • swap two rows,
- • add c times one row to another one.

[*A b*] will then have taken the following form:

a ₁₁	a ₁₂	•••	a_{1n}	<i>b</i> ₁
0	a_{22}	•••	a_{2n}	⁰ 2
:	:		:	:
•	•		•	•
0	0	•••	a'_{nn}	b'_n

and the original equation is transformed to Rx = c with an upper triangular matrix R, from which the unknowns x can be found by back substitution.

Assume we have transformed the first column, and we want to continue the elimination with the following matrix

a ₁₁	a_{12}	•••	a_{1n}	ы]
0	a'_{22}		a'_{2n}	Ы2
0	$a_{32}^{\bar{\prime}}$	•••	a_{3n}'	H ₃
:	:		:	:
•	•		•	· 1
0	a'_{n2}		a'_{nn}	b'_n

To zero a'_{32} we want to divide the second row by the ``pivot" a'_{22} , multiply it with a'_{32} and subtract it from the third row.

If the pivot is zero we have to swap two rows. This procedure frequently breaks down, not only for ill-conditioned matrices. Therefore, most programs perform ``partial pivoting", i.e. they swap with the row that has the maximum absolute value of that column.

`Complete pivoting", always putting the absolute biggest element of the whole matrix into the right position, implying reordering of rows and columns, is normally not necessary.

http://ikpe1101.ikp.kfa-juelich.de/briefbook_data_analysis/node101.html

a ₁₁ 0	$0 \\ a'_{22}$	 0 0	b1 Ы2]
: 0	: 0	 : a'nn	: b'n	.

Therefore, back substitution is not necessary and the values of the unknowns can be computed directly. Not surprisingly, Gauss-Jordan elimination is slower than Gaussian elimination.

Next Up F	Previous	x conter	Index
-----------	----------	----------	-------

Next: Gaussian Quadrature Up: No Title Previous: Gaussian Distribution

Rudolf K. Bock, 7 April 1998

Page 2 of 2